6 research outputs found

    A Call for Standardization and Validation of Text Style Transfer Evaluation

    Full text link
    Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.Comment: Accepted to Findings of ACL 202

    Text Style Transfer Evaluation Using Large Language Models

    Full text link
    Evaluating Text Style Transfer (TST) is a complex task due to its multifaceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nevertheless, it remains unclear whether these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a feasible alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing evaluation of LLMs in diverse tasks, offering insights into successful outcomes and areas of limitation

    Ordinal Regression for Difficulty Estimation of StepMania Levels

    Full text link
    StepMania is a popular open-source clone of a rhythm-based video game. As is common in popular games, there is a large number of community-designed levels. It is often difficult for players and level authors to determine the difficulty level of such community contributions. In this work, we formalize and analyze the difficulty prediction task on StepMania levels as an ordinal regression (OR) task. We standardize a more extensive and diverse selection of this data resulting in five data sets, two of which are extensions of previous work. We evaluate many competitive OR and non-OR models, demonstrating that neural network-based models significantly outperform the state of the art and that StepMania-level data makes for an excellent test bed for deep OR models. We conclude with a user experiment showing our trained models' superiority over human labeling

    Evaluating Dynamic Topic Models

    Full text link
    There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model's temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs. We also conducted a human evaluation, which indicates that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs, and guiding future research in this area

    Learning to Play Text-based Adventure Games with Maximum Entropy Reinforcement Learning

    Full text link
    Text-based games are a popular testbed for language-based reinforcement learning (RL). In previous work, deep Q-learning is commonly used as the learning agent. Q-learning algorithms are challenging to apply to complex real-world domains due to, for example, their instability in training. Therefore, in this paper, we adapt the soft-actor-critic (SAC) algorithm to the text-based environment. To deal with sparse extrinsic rewards from the environment, we combine it with a potential-based reward shaping technique to provide more informative (dense) reward signals to the RL agent. We apply our method to play difficult text-based games. The SAC method achieves higher scores than the Q-learning methods on many games with only half the number of training steps. This shows that it is well-suited for text-based games. Moreover, we show that the reward shaping technique helps the agent to learn the policy faster and achieve higher scores. In particular, we consider a dynamically learned value function as a potential function for shaping the learner's original sparse reward signals

    Discriminative machine learning for maximal representative subsampling

    No full text
    Biased population samples pose a prevalent problem in the social sciences. Therefore, we present two novel methods that are based on positive-unlabeled learning to mitigate bias. Both methods leverage auxiliary information from a representative data set and train machine learning classifiers to determine the sample weights. The first method, named maximum representative subsampling (MRS), uses a classifier to iteratively remove instances, by assigning a sample weight of 0, from the biased data set until it aligns with the representative one. The second method is a variant of MRS - Soft-MRS - that iteratively adapts sample weights instead of removing samples completely. To assess the effectiveness of our approach, we induced artificial bias in a public census data set and examined the corrected estimates. We compare the performance of our methods against existing techniques, evaluating the ability of sample weights created with Soft-MRS or MRS to minimize differences and improve downstream classification tasks. Lastly, we demonstrate the applicability of the proposed methods in a real-world study of resilience research, exploring the influence of resilience on voting behavior. Through our work, we address the issue of bias in social science, amongst others, and provide a versatile methodology for bias reduction based on machine learning. Based on our experiments, we recommend to use MRS for downstream classification tasks and Soft-MRS for downstream tasks where the relative bias of the dependent variable is relevant
    corecore